光伏組件支架基礎上作用的荷載主要有:支架及光伏組件自重(恒荷載)、風荷載、雪荷載、溫度荷載及荷載。其中起控制作用的主要是風荷載,因此基礎設計應保證風荷載作用下基礎的穩定,在風荷載作用下,基礎有可能出現拔起、斷裂等破壞現象,基礎設計應能保證在此作用力下不出現破壞。
以下我們來了解地面光伏支架基礎與平面屋頂光伏支架基礎的類型都有哪些以及它們都有什么特征。
鉆孔灌注樁基礎:
成孔較為方便,可以根據地形調整基礎頂面標高,頂標高易控制,混凝土鋼筋用量小,開挖量小,施工快,對原有植被破壞小。但存在混凝土現場成孔、澆筑,適用于一般填土、粘性土、粉土、砂土等。







柔性支架采用兩固之間張拉預應力鋼絞線的方式,兩固采用鋼性基礎提供反力,可實現10~30 m大間距。這種設計可規避山地起伏、植被較高等不利因素,僅在合適的部位設置基礎點并張拉預應力鋼絞線;同時在水深較深的漁塘也可以在保持水位不動的條件下,實現基礎及柔性支架的施工。
設計中,鋼絞線作為組件安裝的固定支架,計算時需考慮自重,以及風壓、雪壓不同荷載組合下的工況,并進行受力分析。區別于傳統支架的剛性變形要求的嚴格限制( 主梁為L/250,次梁為L/200[1]),柔性支架對變形沒有嚴格限制,目前可根據實際情況采用撓度容許值L/30~L/15,在這種變形條件下不影響鋼絞線的力學性能,因此,柔性支架可以更好地適應大跨度方案,同時可控制好總造價。

根據柔性支架安全情況,荷載組合可分為僅考慮結構自重、考慮自重與雪荷載共同作用、考慮自重與風荷載共同作用下的3 種情況。這3 種受力情況下荷載計算與組合形式不同,受力分析時,對不同的荷載效應進行組合,形成不同工況。同時,環境溫度的變化會導致鋼絞線膨脹或收縮,從而造成預應力的變化,并引起鋼絞線位移增大或縮小。因此,一方面應保證在溫度上升達到設計高值時,鋼絞線位移仍然滿足剛度條件;另一方面保證在溫度降低到低值時,鋼絞線應力不超限。
1) 應先張拉前( 下) 鋼絞線,后張拉后( 上)鋼絞線。張拉后鋼絞線時對前鋼絞線的影響較小,而張拉前鋼絞線會造成后鋼絞線較多的應力損失。
